3 Best Wi-Fi Router Review of 2020

After testing 10 routers over 120 hours, we’ve determined that the most effective Wi-Fi Router for wirelessly connecting your laptops, your smart devices, and anything your lifestyle depends on is the TP-Link Archer A20. It was faster than anything else we tested at both close and long-range, it’s reliable, and it shrugs off the stress of handling multiple wireless devices simultaneously.

Our Pick

The best Wi-Fi router

$190
TP-Link’s Archer A20 is easy to set up and has three wireless bands instead of the usual two, which helps it handle more connections at once. It’s big, but it is our top performer, and it includes advanced features, such as link aggregation, that will appeal to the technically inclined.

The TP-Link Archer A20 Wi-Fi Router tri-band 802.11ac router surpassed all of our special tests with top marks. If you don’t have a huge or complicated house that needs a mesh-networking kit, the Archer A20 is the best choice to replace an older router or one that doesn’t have the range, speed, or reliability you need now. The Archer A20 has features such as a quad-core processor and band steering over its three channels (two 5 GHz and one 2.4 GHz), which can help you connect your household’s expanding collection of wireless devices while avoiding dropped connections and slowdown.

TP-Link Archer A20 Wi-Fi Router
Photo: Rozette Rago

The TP-Link Archer A20 is our pick because it was the fastest router we tested with the best range, it’s reasonably priced, and it has features that others lack, such as a quad-core processor and tri-band radios. Those features improve performance by helping the router handle more connections simultaneously, with results that definitely came through in our tests. The TP-Link Archer A20 falls under the $200 sweet spot for standalone routers. Although routers certainly can cost more, we think those models’ extra features (such as optimizations for gaming PCs and 802.11ax compatibility) aren’t worth the extra cash for most folks.

The Archer A20 may be a tri-band router, which suggests it offers two 5 GHz channels for quick communication at shorter ranges and one 2.4 GHz channel for slower connections at longer range; most routers during this price range offer just one 5 GHz band. The Archer A20 also has a 1.8 GHz Broadcom quad-core processor and 512 MB of RAM to help it deal with the traffic from all your devices. Budget routers like the TP-Link Archer A7 make do with a single-core processor and 128 MB; those specs are certainly sufficient for handling a half-dozen devices in a small apartment, but you need the extra power of a model like the Archer A20 to maintain more simultaneous connections without getting bogged down.

We’ll get into this topic more in the testing section below, but the Archer A20 was the top performer in our multi-client test, which measures how a browsing session is affected by other devices downloading files or streaming videos simultaneously. The Archer A20’s quad-core processor, its 512 MB of RAM, its second 5 GHz wireless band, and its Smart Connect band-steering feature helped it cope with all of our network traffic. We left the router’s configuration as close to out-of-the-box as we could, though we had to enable Smart Connect manually. This chart shows how long our test laptop took to simulate loading a Web page while three other laptops around the house were busy doing other things like downloading files or streaming video.

This test measured how long it took to fetch a Web page, with the X-axis of the chart noting what percentage of requests were fulfilled in that amount of time. A value of 1,000 ms at 50 percent means that half of all requests had one second or less of latency. As you can see, the Archer A20 remained far under the 750 ms threshold throughout our test sequence, just breaking the line only at the 100th percentile. You likely wouldn’t perceive any browsing slowdowns, even while the other clients were hammering the router with streaming, downloading, and other browsing requests. Out of the 10 routers we tested for this guide, the Archer A20 was the fastest and most consistent.

The Archer A20’s band steering was able to keep all our laptops connected to the two 5 GHz bands without slowdowns, even for our long-range clients in the garage and master bedroom. That’s good, because it frees the 2.4 GHz channel for other devices that don’t have 5 GHz radios.

The Archer A20 looks like a box with a set of six antennas that swing up out of the router’s body (we tested it with the antennas deployed). It has the usual set of four Gigabit Ethernet ports on the back, along with a single marked WAN port that you connect to your cable modem or fiber gateway. It has one USB 2.0 port and one USB 3.0 port on the back so you can connect a USB hard drive or SSD for media streaming or file sharing. The router can also act as a Time Machine backup device with external storage.

A feature called link aggregation (aka port bonding) allows you to achieve Internet accelerates to 2 gigabits by using two connections at an equivalent time. You can connect the main WAN port and LAN port 1 on the back of the router to a cable modem that also supports link aggregation, such as our upgrade pick, the Motorola MB8600. Although very few ISPs support faster-than-gigabit Internet now, this feature offers a way to future-proof if you know that such speeds are something you’re interested in (though most people don’t need a connection that fast). You can also link two of the Archer A20’s LAN ports together to increase bandwidth for networked storage devices that support link aggregation, such as the Synology DiskStation DS418play. Both situations make more sense if you’re running a business from your home.

The TP-Link Archer A20 comes with a two-year warranty, double the length of the protection that comes with the Netgear R7000P, our previous top pick. Routers usually come with one to three years of coverage, though most manufacturers give you two years.


Runner Up
back to menu ↑

Synology RT2600ac

If our main pick is unavailable

$200
The Synology RT2600ac has only two wireless bands instead of three, but it still offers excellent performance. It’s easy to set up, you can expand it into a mesh network, and you can fine-tune its wireless settings to improve performance (though most people shouldn’t need to worry about it).

The Synology RT2600ac Wi-Fi Router is a bit pricier than our pick, and it finished our performance tests in a dead heat with the Asus Blue Cave and Asus RT-AC86U for second place. It has a dual-core processor, rather than a quad-core, and it lacks a third wireless radio, which means it may reach its limits earlier than the Archer A20. You can extend the RT2600ac into a mesh network with the add-on Synology MR2200ac router; purchasing a mesh-router kit is often less expensive than buying two separate routers to create a mesh network, though, and many mesh kits have extra features, such as dedicated wireless bands, that help them perform better.

The Synology RT2600ac Wi-Fi Router
Photo: Michael Hession

The Synology RT2600ac Wi-Fi Router is easy to set up and extremely configurable. It was also speedy on our throughput tests, and it offered excellent performance when serving multiple clients. It’s typically more expensive than the Archer A20 Wi-Fi Router, and because it lacks a second 5 GHz radio, it may reach its limits earlier if your household owns a lot of wireless devices or if the 2.4 GHz band in your area is congested, but it still performed well on our tests. You may not be familiar with Synology, but the RT2600ac has been available for a couple of years, and it builds upon the company’s expertise with network-attached storage units and other network devices. The RT2600ac has received good reviews from sites such as Dong Knows Tech, CNET, PCMag, and SmallNetBuilder.

This Synology Wi-Fi Router ended up alongside two other dual-band routers (the Asus Blue Cave and Asus RT-AC86U) at the top of our performance charts. Like the Archer A20, each of these routers was able to handle the traffic our multi-client test generated and to give us a smooth browsing experience. And the Synology was able to keep a strong connection to our long-distance testing site, transferring data at a speedy 166 Mbps throughput (by comparison, the budget TP-Link Archer A7 Wi-Fi Router was able to manage the throughput of only 27 Mbps to the garage).

Smart Connect (aka band steering) worked out of the box, so we didn’t have to search the administration interface to enable it as we did on the TP-Link routers. It chose bands intelligently, shifting the two farthest laptops (in the master bedroom and in the garage) to the 2.4 GHz band automatically during our multi-client tests. When we ran our single-client maximum-throughput test, the client in the garage automatically jumped back onto the 5 GHz channel. If you’re tech savvy, you can tweak the Smart Connect thresholds to determine exactly when clients will connect to the 2.4 GHz or 5 GHz channel, but we didn’t need to do that to get good performance during this round of testing.

The RT2600ac Wi-Fi Router comes with a 1.7 GHz Qualcomm dual-core processor and 512 MB of RAM. That’s two fewer cores than in the Archer A20’s CPU, but a dual-band router can’t deal with as many clients overall, so the dual-core CPU is fine.

We found setup quick and easy using Synology’s SRM (Synology router management) operating system, which is based on the company’s operating system for NAS boxes. The TP-Link Archer A20’s setup was similar to that of other routers we’ve configured in the past: The process is straightforward when the setup wizard is guiding you, but you can easily get confused when trying to find a specific setting after that initial setup. In contrast, Synology’s SRM looks and reacts like a Windows-based operating system, so you’ll find settings grouped logically. If you have our pick for the best NAS for home users, the Synology DiskStation DS218+, you’re probably familiar with the interface. It runs in a browser tab, and it gives you windowed panes to navigate between settings.

The interface gives each function its own window, which helped us focus on the task we needed to do. Once we got used to the interface, it made more sense to look for various wireless-channel settings in the Wi-Fi Connect control panel. Compare that experience with the TP-Link interface, where you have to remember that the SSID and password are available under the Wireless Settings section in the Basic settings pane but that the security level is two levels deep (under Advanced Setup, and then Wireless Settings) in the Advanced settings pane. The windows also let you keep comparable info open at the same time, so you can check how a setting change affects your clients’ connections without having to slog back through more tabs and menus.

Other advanced features include easy-to-set-up dual WAN failover protection. That is, if your main ISP connection goes down, you can plug your smartphone or a USB 4G modem into the router, and it will use the mobile Internet connection as a backup. Or you can connect a second cable modem or DSL line to LAN port 1, and if the most Internet connection goes down, the router will automatically switch to the backup (and back again to the main line once it’s up).

The RT2600ac can act as a base station for one or more Synology MR2200ac routers acting as wired or wireless mesh extenders. Although these can extend an existing network to underserved parts of your house after you purchase a standalone router, we still recommend buying a tri-band mesh router kit if you know you will need to cover a large area or have indoor obstacles that block Wi-Fi, such as masonry.

Like the TP-Link routers, the Synology RT2600ac comes with a two-year warranty.


Budget Pick
back to menu ↑

For smaller spaces or fewer devices

$65
The TP-Link Archer A7 is great for smaller spaces. It’s an excellent performer, it typically costs less than half as much as our top pick, and firmware updates have improved it significantly.

TP Link’s Archer A7 Wi-Fi Router is relatively inexpensive, and it’s a great choice for small homes or one- or two-bedroom apartments. TP-Link has improved the Archer A7 since we tested it in 2018, adding band steering (here called Smart Connect) and TP-Link OneMesh support via firmware updates. The A7 lacks beamforming and MU-MIMO, two high-end features that can improve speeds but aren’t vitally important but still performs well at shorter distances. On our toughest test, it outperformed two higher-priced competitors, though the Archer A20 and other top performers still beat it overall. It’s typically less than half the price of the Archer A20, and we think it’s the best router you can buy for less than $100.

The TP-Link Archer A7 Wi-Fi router
Photo: Michael Hession

The TP-Link Archer A7 Wi-Fi Router prompted us to reverse our past theory that you have to forgo vital features to find a router for under $100. While the top picks in this guide outperformed the Archer A7 overall, tested alongside our contenders the Archer A7 held its own and surpassed several routers costing double the price or more.

A recent firmware upgrade added band steering (Smart Connect) to the Archer A7, along with OneMesh support.2 The latter will extend your network with the help of add-on routers or mesh Wi-Fi extenders, but Smart Connect is the more significant upgrade since it will automatically assign devices to the 2.4 GHz or 5 GHz wireless band based on which one will deliver better performance. We don’t think the A7 would be as robust as the tri-band Archer A20 for a larger home with dozens of devices—it has one fewer wireless radio, less RAM,

The Archer A7 Wi-Fi Router has a 750 MHz single-core Qualcomm processor and 128 MB of RAM, which fall pretty far short of the quad-core processor and 512 MB of RAM in the Archer A20, but its performance in our tests certainly showed that it is a capable router.

During our testing, the Archer A7 connected the long-range client in the garage on the 2.4 GHz channel while retaining the others on the 5 GHz channel, economically splitting the load so that the download and 4K streams didn’t interfere with the two clients browsing the Web. The budget CPU and low memory showed their limitations when the measurements were in the 95th to 99th percentile. This test result is a pretty good indicator of what living with this router would be like in real life: One of every 20 or so page loads will be noticeably slower than average, in this case taking a little over one and a half seconds to three seconds. That’s longer than the 0.42–second result we observed at the 95th percentile for the Archer A20—but the Archer A7 is less than half the price.

Tested throughput at close range in the spare bedroom was pretty good, and this model ran neck and neck with the Linksys MR8300 and the Synology MR2200ac. Throughput at longer range in the garage was quite a bit lower due to the 2.4 GHz connection. That said, the garage client was still able to view a 4K video stream smoothly.

The Archer A7 is compatible with TP-Link’s OneMesh routers and mesh extenders. You can use the latter to quickly connect dead zones in your home. However, since it uses the same wireless radios as every other device on your network, it’s not as adaptable as a mesh-networking kit that lets you use either wired backhaul or dedicated wireless radios. That said, it’s notable that you even have that option in a budget router. We’re planning on testing TP-Link’s OneMesh alongside dedicated mesh-networking kits in our next update.

The Archer A7 also comes with a two-year warranty, on a par with the coverage for the Archer A20 and Synology RT2600ac.


back to menu ↑

How we picked best wi-fi router

We researched dual- and tri-band routers from each of the major router manufacturers, including Asus, D-Link, Linksys, Netgear, and TP-Link. We also looked for routers from less well-known manufacturers with strong reviews from tech reviewers or potentially interesting features that set them apart.

We considered six criteria:

  • Price: You can buy a great router for $150 to $200, and a good one for $80 to $100. Routers priced higher usually add features that aren’t necessary for most homes, such as gaming enhancements, extra Ethernet ports, or 802.11ax support (which most devices can’t use yet). Once you pass $200, especially if you have dead spots in your home’s current Wi-Fi network, you should consider a mesh-networking kit instead.
  • Good throughput: You need this on both the 2.4 GHz and 5 GHz bands. If you have a connection, it should be fast enough to download files quickly and stream videos smoothly.
  • Good range: This also applies to both the 2.4 GHz and 5 GHz bands. You should be able to connect to a well-placed router from anywhere in an apartment or a small house.
  • Band steering: This feature helps you make use of all available bands. All 802.11ac routers develop with at least two wireless radios, and the router should be capable to use all of them without asking you to manually connect your devices to separate networks.
  • A fast processor: A router with a fast processor can manage more connected devices and offer enhanced performance. No matter how good your radios are, the slow single-core processors found in most cheap routers can still drag things down.
  • RAM: Along with a good multi-core processor, 512 MB RAM helps the router deal with multiple clients simultaneously. For budget routers, which typically need to manage fewer devices, 256 MB or even 128 MB is quite fine.

Most routers also offer some other features such as VPN connections, USB ports to share printers or external drives, and limited parental filtering. We looked at those, but we didn’t make them the main focus of our testing—we were more concerned about the quality of the Internet access a router provided because that’s what most people will notice day to day. MU-MIMO is nice for future-proofing but by no means essential. An extra 5 GHz radio (tri-band) is suitable for people with many devices.

Also, we used customer reviews on Amazon and Newegg, plus professional router reviews and performance rankings from CNETDong Knows TechPCMagPCWorldSmallNetBuilder, and Trusted Reviews, to generate our list of contenders. After identifying everything that met all of our criteria, we thoroughly tested the most promising routers ourselves.


back to menu ↑

How we tested

Testing for most Wi-Fi router reviews consists mostly of connecting a single device to Wi-Fi at various distances, trying to get the biggest throughput number possible, and declaring the router with the most important number and therefore the best range the winner, a minimum of in terms of raw performance. The problem with this method is that it assumes that a big number for one device divides evenly into bigger numbers for all devices. This is usually a valid assumption for wired networking, but it doesn’t work well for Wi-Fi.

Instead of testing for the maximum throughput from a single laptop, we used four laptops, spaced around 2,300 square feet of a two-story suburban home, to simulate the real-world activity of a busy home network. Because these tests simulated real-world traffic, they did a better job of modeling real-world performance compared with a tool like iPerf, an artificial testing tool that moves data from one machine to another as fast as possible.

Our four laptops ran the following tests:

  • One sat in the downstairs master bedroom and simulated a 4K video streaming session. It tried to download data at up to 30 Mbps, but we were satisfied if it could average 25 Mbps or better, which is what Netflix recommends for 4K.
  • The second sat in the garage and simulated a Web-browsing session. Once every 20 seconds or so, it downloaded sixteen 128 KB files simultaneously to simulate loading a modern Web page; ideally pages should load in less than 750 milliseconds.
  • The third laptop sat in the living room across the house, simulating a second browsing session. It also downloaded sixteen 128 KB files simultaneously, and on this machine, we looked for the same quick load times.
  • The last laptop sat in a spare bedroom downstairs at close range and downloaded a very large file.1 We didn’t care about latency—the amount of time between when the computer made a request and when the router responded to it—for our large file download, but we did want to see an overall throughput of 100 Mbps or better.
An illustration of the home used to test routers for this review, showing where browsing tests, downloading tests, and 4k streaking tests were performed in relation to the router placement.
We’ve labeled this top-down sketch of our test house with the locations of our router and clients for our latest testing setup. The drawing isn’t perfectly to scale, but it is a close approximation of the various rooms, closets, and walls that our routers’ signals needed to pass through. Illustration: Sarah MacReading

We ran all these tests at the same time for a full five minutes to simulate a realistic extra-busy time on a home network. Although your network probably isn’t always that busy, it is that busy often enough—and those busy times are when you’re most likely to get annoyed, so they’re what we were modeling in our tests.

These tests simultaneously evaluated range, throughput, and the router’s ability to multitask. We also made sure to enable each router’s load-balancing band-steering feature, when applicable, to make sure that the routers would properly distribute our client laptops across all available bands to improve performance. We didn’t touch most of the other settings—you should be able to connect to the Wi-Fi and have it work without constantly fiddling with things.

To test the router’s best possible speeds at close range, we placed one of our test laptops approximately 15 feet from the router, with one interior wall (or ceiling) between router and laptop; we also performed a long-distance maximum-throughput test at about 50 feet, with four interior and two exterior walls in the way. We tested throughput using a real HTTP download, the same protocol you use to view websites and download files, to better expose differences in CPU speed and general routing performance.

We used a mix of MU-MIMO–compatible and older 802.11ac USB Wi-Fi adapters to simulate a home network serving different clients. For example, many recent Mac and Windows laptops as well as top-of-the-line phones such as the iPhone XS and Samsung Galaxy S10 have MU-MIMO-compliant wireless adapters, while budget smartphones or smart speakers are unlikely to support MU-MIMO.

Because we were testing in the real world, external variables (competing signals, walls, network traffic) affected our results, just as they’re likely to affect yours. The purpose of our testing was not to choose a router that was slightly faster than another; it was to see which routers could deliver consistently strong performance without major issues in real-world conditions.

Subscribe to our list

Don't worry, we don't spam

1 Comment
  1. […] that uses AV2-2000. So we directly tested each kit, using equivalent techniques employed in our Wi-Fi router, Wi-Fi mesh, and Wi-Fi extender […]

    Leave a reply

    Compare items
    • Total (0)
    Compare
    0